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EFFECTIVE DIFFUSION OF A DYNAMICALLY PASSIVE
IMPURITY IN NARROW CHANNELS

A. I. Moshinskii _ UDC 532.542.2

The diffusion equation is rarely solved successfully by analytical means when it contains a convective
term in which the velocity components are complex functions of the space coordinates. In the case of diffusion
in channels, the author of [1] proposed a method of reducing the basic equation to a simpler form containing an
effective diffusion (dispersion) coefficient. This approach was later followed intensively (see [2-4], for ex~
ample, where other approaches to the problem were also proposed). Here, we obtain-a similar equation of ef-
fective diffusion in narrow channels under the condition that the stream function in the channel used to express
the dispersion factor is known. Calculation of the stream function is an independent problem. We subsequently
use the relations obtained to solve the problem of extracting a substance from narrow trenches (slits) when the
channel has a boundary through which exchange of the substance with the main flow is possible.

As is known, the flow scheme of Lavrent'ev [5] agrees better with experimental results than does other
models for the flow of a low-viscosity fluid in a trench. The flow model is based on the theorem [6, 7] of con-
stancy of vorticity in closed regions. However, vorticity may not be constant when the viscosity coefficient u
is variable [8]. Assuming that the vorticity distribution was known, we obtained a general expression for the
stream function in a narrow cavity bounded by the coordinate lines of an orthogonal coordinate system. As an
example, we examined the case of extraction of a substance from a deep slit.

We propose an integral transformation which canbe used tosolve a certain range of problems of the dis-
persion of a substance in channels.

1. Derivation of Equation of Effective Diffusion and Initial Condition. We will assume that the length of
the channel in the X, direction is much greater than the length in the X, direction. The boundaries of the chan~-
nel are assumed to coincide with the coordinate lines of the plane X, X,. We will limit ourselves to the two-
dimensional problem. Let the stream function ¥ in the channel be known, and let its values at the houndaries
of the channel be equal to zero. Then the components of the velocity of the fluid in the channel are determined
by the formulas

v, = H;'9¥/0X,, v, = — H,*9%/0X,, (1.1)

where H1’2(X1, X,) are the Lamé constants. The equation of diffusion of the impurity in the channel has the form

0 o | . o [ 8 a (Hy ac
8111H26t+bW(¢"c)—5.1:_2(ﬂ—26_x2)+82n5;1(.1T1'5-$—1 ) 1.2)

while the dimensionless parameters and coordinates are connected to the dimensional parameters and coor-
dinates by the relations

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 62-71,
May-June, 1987. Original article submitted March 24, 1986.
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X X ¥ 11 W D?
x1=~T11, 12:722’ ‘Pzry';’ Z:Z)T%)z Ez"goz‘f': n:_‘if—g—.

Here, c is the concentration of the substance; 1, and I, are the dimensions of the channel in the directions of the
X, and X, axes; 7 is dimensional time; ¥, is the characteristic scale of the stream function; D is the coefficient
of molecular diffusion. If we assume that the quantity n is on the order of unity or greater, then the "narrow-
ness" condition of the channel will be expressed by the inequality 7; > [, or € < 1. The choice of time scale
was suggested to us by Taylor's successive approximation procedure [1} for the analogous problemin a chan-
nel when the nonsteady term is ignored in the first approximation and considered in the second approximation.
It can be shown that in the case of flow in the channel, the procedure proposed below leads to the Taylor dis-
persion equation in the first approximationif we start out on the basis of the corresponding diffusion equation
analogous to (1.2). We assume that the walls of the channel are impermeable to the impurity, i.e., that we have

the boundary conditions

8c/0z, \x o = 05 (1.3)
while at the initial moment of time we have

clymo = g(x1, T). (1.4)

We will not concretize the condition on the boundary x; = 0 linking the channel with the external flow or the con-
dition on the bottom of the channel x; =1. It is natural to solve problem (1.2)~(1.4) by the method of small per-
turbations [9, 10} in the form of a series

c= ¢ _I_ £cy —[— 82(!2 'I- e ey (1 -5)

Having inserted this series into Eq. (1.2) and having grouped terms of the same order with respect to &, we
obtain

6[(H1/H2)6£‘0/0xz]/0$2 = 07 (1.6)
6[(H1/H2)801/0x2]/012 == W(\h {‘0); (1.7)

s (H, oc, o (Hydeig) . _
o 5) = w e e B2t (%), v= s -9

We note that Eqs. (1.6)-(1.8) do not contain derivatives of the sought functions with respect to time (at i = 2,
the equations contain the time derivatives of functions which must be determined earlier by successive integra-
tion of equations with smaller numbers). This makes the problem a singularly perturbed problem [9, 10] and
requires the construction of certain characteristics of the internal solution.

The integral of Eq. (1.6) satisfying condition (1.3) has the form c; = F(xy, t). Then (1.7} is simplified, and
its first integral will be

Ocyl0xy = ($H L H1)oF 02y, (1.9)

where we used the triviality of the stream function at the walls x, = 0; 1. Now we integrate Eq. (1.8} for x, with~
in (0, 1) at i = 2. After certain calculations, we obtain the equation

m(z,)0F/81 = 0{[Dy(a1) - Dy(z,)10F (82, YDz, {(1.10)

to determine the function F =c¢;. Here
1 1 1
2 HZ HZ
m(z;) =\ H H,dz,, Dy (z)) = \ ¢ Fldx.z, D, (z;) = nf‘,—l—ldxz. (1.11)
0 0 0

For simplicity, we assume that everywhere in the region 1, . & [0; 11,0 <8 < Hy, H, < N < o, so that all
of the integrals (1.11) converge. Similarly, we find the following from (1.9) and (1.8) ati =3

x
F
o = a—f Vo + G (@, 1), (.12)
¢

where the function G is determined by the equation
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G _ a a6 a ar
) i = [(01+2) wlr g me ]+

1
_gj’ 2 hdz, + n 2L Lf‘“dz 2 ijdezz,
1o (1.13)

x

A(zy, 2g) = j\PH dxyy 0 (21, 7)) = 51{ Vdzs, Dy (@) = j( =
o

— oz, ) dzs
i.e., by (1.10), but with a nonvanishing source term expressed through the function F.

If we cannot describe the houndary of the channel by the coordinate line of a certain orthogonal coordinate
system but we can satisfy the inequality I (x,) < 1, where x, = 1, (x, are relations determining the boundaries
of the channel and the coordinates x; and x, are Cartesian coordinates in this case, then instead of (1.10) we
can use the same method to obtain '

Ua)oF!8t = 0llzy)D y(2)0F oz, Yoz,
where the function Dy(x,) is determined by the formula

+
D) =n+ f pde,, 1=l +1.

We find the initial condition for (1.10) by adding to the internal solution, for which we change the time T =
t/e%. The equation of zeroth order with respect to ¢ appears as follows in the internal variables

HHACIT = Al(HyHa)dCol0z, oz, (1.14)

(C is the internal concentration). Having integrated Eq. (1.14) over x, with (0, 1) and using additional conditions
(1.3), (1.4), we find

L
-:—Tj' H,Coday =0, . e, jHHCdxz_jH H,g (21, 7,) da,. (L.15)
[}
Using the principle of limiting combination [9] _
Hm Cy = hm ¢g =Fliw ’ (1.16)
Tro0 t>

in Eq. (1.15), we obtain the sought initial condition

1

F\t—o = "_5 H,g (2;, x,) dz, = {g). (1.17)
0

We find the initial condition for (1.13) as follows. We subject the equation H;H,8C,/8T + W[y, Cyl = 8 (H/Hy) -
8C,/0%,]/ 8%, to a Laplace transformation with respect to the variable T for the function of the first approxima-
tion of ¢ of the internal solution, and we integrate the resulting relation over x, within (0, 1). With allowance
for boundary conditions (1.3) and the conditions ‘Plxz =031 =0

1 1 *
* d 4
» j}fzrlﬂzcldx2 - j Va2 dra (1.18)
¢ 0

where the asterisk denotes quantities subjected to Laplace transformation; p is the Laplace transform variable.
Henceforth using the limit equation [11]

lim pf* = lim §,
p:o pf Lin Wf,, (1.19)

we only use information for the function 9Cj/8x, which is asymptotic at p — 0. This information is obtained
from the Laplace transform of Eq. (1.14). Combination with the external solution and condition (1.17) shows
that the dominant term of the asymptotic expansion of Cg‘ at p — 0 will be p"l(g> . However, this term does not
depend on x,, so it does not contribute to the right side of (1.18). The following term R is on the order of unity
with respect fo p. For it, we have the expression
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—:‘Z_‘S 4, 1{g) — gl dz,. (1.20)
1%

Subsequent terms in the asymptotic expansion of Co at p — 0 will be of a lower order with respect to p, so their
contribution at the limit of integral (1.18) will be zero for p — 0. Expansion of the external solution in the in-
ternal variables ¢(Te?) = coly—q -+ €¢1li=p + &2lcali—0 + Tcy/dtl;—o] + . . . shows that the principle of limiting com-
bination (1.16) can also be used for the functions ¢, and C;. Changing over to the limit p — 0 in (1.18) and using
{(1.19) and Egs. (1.12) and (1.20), we find the sought initial condition for the function G in (1.13):

G \i=° = (.1:1) dz,

UMI H,lg—{g>}dz, — (& yH i ?»dwz] (1.21)

Thus, we have formulated Egs. (1.10) and (1.13) and the corresponding initial conditions for the functions
¢, and ¢, of the first two approximations. It should be noted that the above procedure is easily generalized to
the case of the presence of sources of the substance both within the channel and on its walls if the sources are
of low intensity (on the order of &?).

2. Calculation of the Stream Function and the Effective Diffusion Coefficient. The equation for the stream
function in the channel will be

I(Hy H2)0/ 02,1102 + €718 [(Ho/H)ow! 02,102, = —HiHz0 (2.1

with the boundary conditions
‘Plxzcon = 01, ¢|x1=0'11 =0 (2_2)

(0 = Q(X1, X,)12/¥s is dimensionless vorticity). By having & in (2.1) approach zero, we obtain the equation of
the external problem. We write the solution of this equation, satisfying the first condition of (2.2}, in the form

Xy 1 1 Ty Ty A .
H H “H
Py (Tg, 275) = _Yﬁz /f;ﬁdxg jfdxzj’HJ{zm (21, 8) dE —Jﬁfd}\,jﬂiﬂzm (21, §) dE, (2.3)
0 ot o 0 o Y b
where the "+" and "-" subscripts dencte the external and internal solutions, respectively. The internal equa-

tion is obtained from (2.1) by changing over to the internal variable x; =x,/en 1/2 and then passing to the limit
g — 0

8 .l 1 v ‘ )
R o .

rx,) =H;/ Hz]x1 =¢l. We introduce a new variable x, and a new function w,through the formulas

Ty
2

0y (23) = H20 oymoy 7, = | dafr (2)s (2.5)
0

The function x,(x,) has an inverse due to monoticity, since r > 0. We also take advantage of this, having
expressed w; through x,, Now we write the equation for y_ as

O*p—[02] 4 B*Pp_[0z; = — 0, (z,), 7, = (0, @), 2, = (0, 00) (2.6)
[ = x,(1) =Dy(0)/n], while the boundary conditions

P ey=oia = 05 Yo femo = 0, o oo = P (2, (), O] = 9 (24)- (2.7)
It should be noted that the function y % (x,) satisfies Eq. (2.6), so it is easily reduced to a homogeneous

equation. Its solution,obtained by the Fourier method, has the form

nkz4 @

v vea =2 B2 2L o)

k2
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The general part of the internal and external solutions is equal to ¢ (x,), so that the following is a uniformly
valid zeroth-order expansion in & for the function y:

il'Lk:):3

=y (2 3) — 2 y m_(;;“:) sin (@)F% (&) sin (Lﬁg)dg (2.9)

2
N p==] e

It should be noted that we can similarly construct the internal solution near the boundary x; =1. Here,
Eq. (2.9) is augmented by yet another sum. This sum coincides with the sum already obtained, to within the
accuracy of the notation.

We will use Eq. (2.9) to calculate the coefficient D, for the case of a deep slit in Cartesian coordinates.
We will also assume that w =const. Then H; =H, =1, X; =X,;, o =1, and after insertion of the function ¢4 =
wxy(1 —X,)/2 into (2.9) and the resulting function y into (1.11), we obtain the following for the coefficient D,:

80° N
D, = % Z {1 —exp[— (2 + 1) 5z, 1}*/(2k + 1)8. (2.10)
k=0 :
Series (2.10) converges very rapidly and, in practice, a single term of the sum can be used for calculations.
The graph of the function D, is shown in Fig. 1.

One of the main applications of the formulas obtained here is study of diffusion processes in channels
with a flow in accord with the scheme in {5]. In this case, the flow velocity v is usually assigned far from the
channel, and w is the sought variable. Various algorithms have been proposed to calculate w [12-14]. How-
ever, by taking advantage of the narrowness of the cavity, we can propose an approximate formula linking v
and w if we equate v to the velocity at the point x, = 0.5, X3 =0. We find the following expression from (2.9)
(v directed against the x, axis)

v=| 61])/0:63 l tx3=o;x2=o,5 = 037w (2.11)
for the dimensionless velocity vector.

3. Example. We will examine the equalization of concentrations in a channel in an external flow, having
assumed that the concentration of the impurity on the boundary of the slit is equal to zero. This assumption
is valid for sufficiently high velocities of the main flow. For the sake of brevity, we designate the Cartesian
coordinates in the usual manner: x and y. The case n K 1 is typical at high velocities, and we will limit our-
selves to this case. As the calculations and the flow patterns in channels [5, 12] show, the streamline bounding
the regions of vortex and potential flow in accord with the scheme in [5] is fairly close to the line y =0. Thus,
for simplicity, we take the streamline fo be a straight line y =0. The same conclusion can be reached for nar-
row channels in the general case as well.

We write the equation of effective diffusion in the form
8¢/t = 8{In + D1(y)18c/dy}loy. (3.1)

We take the initial concentration of impurity in the slit to be unity, so that the additional conditions for Eq. (3.1)
will be

c]t=0 = 11 cly=o = 07 ac/ayly=1 = 0. (3.2)

By virtue of the smallness of n, it is natural to seek the solution of problem (3.1), (3.2) by the perturba-
tion method. With conditions (3.2), the solution of the external problem (far from the boundaries y =0 and 1)
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and the internal problem near the line y =1 is constant and is equal to unity. Our main interest is in the local
solution near the line y =0, for which the coefficient D, in (3.1) is determined by Eq. (2.10). It should be noted
that the function D,(y) has a second-order zero at y =0. This suggests the form of the internal variable: x =
y(k/n) 1/2 [k = Dj(0)/2 = w?/6]. The equation of the internal problem takes the form

0cl8t = al(1 + 2*)dc/ox)ldx (3.3)
with the additional conditions '
c§=0 = 11 bx:o == 07 cx-yoo — fin-, g = kts

Use of the Laplace transform with respect to the variable ¢, while keeping the notation employed in Part 1,
leads to the problem

dl(z® + Vydc*tdz)ldz = pe* — 1; (3.4)
* g = 0, ¥, dc*/dz], e — £in. (3.5)

with the solution
*(p, 2) = 1/p — Qu(iz)/pQy(+07), v = —0.5 + V025 + p (3.6)

[Q,x) is a spherical second-order function]. The singular points of the function c*(p, x) are the pole p =0 and
the branch point p =—0.25. The Reimann—Mellin integral

(0 o) = g | *exp (D) dp
"L

(integration is done over the straight line Re p =8 > 0), by virtue of the asymptotic formula in {15] for the
function @, (x) and the Jordan lemma, can be reduced to the residue at the point p =0 and to the integrals over
the edges of the slit, connecting the points p = » and —0.25 along the negative part of the real axis of the plane
p. A similar slit in the plane x (—~», 1) was used to isolate the single-valued branch of the function Q,(x), so
that the symbol Q, (+0i) should be taken as the value of the function Q, (x) on the upper edge of the slit. Using
well-known {15] formulas for Q,(+0i), the formulas linking first- and second-order Legendre functions, and
the residue of the function exp(pg)e* (p, X) at the point p =0, we have

- T — A G (z, N dr
__Z2arctgz {___C__}j’ r th (aur) exp (— &7 12 1)
€ T Tw 4Vaexp 4 ) ch (aur) (P18 T e/s+ i) P 3.7
where I'(x) is a gamma function, while the function Gj (%, r) is determined by the formulas
P, i2) + (— 1Y P, (—i
Gj (xz r) . _dr—1/2 (iz) - ( ) ir 1/2( iz) ]: 11 21 (3-8)

—2(=iF :

P, (x) is a first-order Legendre function. We are interested mainly in the flow of the substance from the chan-
nel, which is found from the expression

dc 2 z T th () exp (— &%) dr

1= Gz femg @ T 8n exp { - T] i ch (ar) (~ +)1/4) T (/44 ir2) |¥ (3.9)
In differentiating the integral (3.7), we changed the order of differentiation and integration. This was

justified due to the absolute convergence of the integral and its derivatives with respect to x, which exists at

¢= 6 >0. We also used the equality Py (0) = —2 V'n/T (— v/2)T(1/2 4 v/2). The integral in (3.9) converges

rapidly for large values of time. Using the Laplace method [11], we easily obtain a formula, asymptotic at

¢ — o, for the dimensionless flow of the substance

2, 877 _oxp (84 _ (6366 + 0,8009 LA
1~ T mwh Ve D00+ O v (3.10)

showing the rate at which q approaches the steady-state value 2/7. It can also be seen that ¢ ~ 1 /(7 g)i/ ¢ at
¢ —0.
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The solution (3.7) is a uniformly valid solution of Eq. (3.1) of zeroth order with respect ton, Itis of a
boundary-layer character and describes the initial stage of recovery of the substance from the slit. The "de-
pletion" of the channel can still be ignored, i.e., the external solution can be taken equal fo unity. K is inter-
esting to examine the behavior of the mean concentration of the substance in the channel for long times. To do
this, we infegrate (3.1) over y within (0, 1) and we change over to the dimensionless coordinates:

. 1
d{cyjdt = — q¥, /B, {ey= 71-5 edz,. (3.11)
0

It is evident from this that the characteristic time of change in the mean concentration (c) will be T, = 1} /¥,.
At the same time, the characteristic time scale for Eq. (3.3) and its solution (3.7) T, —DZz/ ¥i. We addltmn-
ally introduce the "diffusion" time T, =12 ¢9/D. The following relation exists between this time scale and the
chosen inequality n < 1

Tz/.Ta = (T1/T3)1/2 = D/llro = n1/2<< '1,

which establish a hierarchy of scales: T; <« T; < T3 We see from this that, first of all, solution (3.7) is
valid for sufficiently short times (r < T;), when the change in concentration away from the boundary can still
be ignored. Second, the presence of circulatory flow in the channel significantly shortens the characteristic
time of change in (c), which in the absence of flow is on the order of T;. Equations (3.7) and (3.9) show that
the solution of the problem changes significantly only in the narrow strip x; = 110(n1 ) « Iy, i.e., ¢ =1 nearly
throughout the channel. If we took another constant in place of unity in initial condition (3.2), then this con~
stant would be present as a multiplier in Eq. (3.9) and the other formulas. We will designate this multiplier
as ¢,. By virtue of the above remarks, the mean concentration coincides with c,, with a high degree of ac-
curacy. Since the mean concentration changes very slowly in the scale T, then replacement of c., by (c) in
Egs. (3.7) and (3.9) leads to a solution whereby Eq. (3.3) is satisfied almost exactly. The evolution of (c) can
be determined with the same accuracy, having inserted the value of q, expressed through {c) in accordance
with the last remark, into (3.11). We thus arrive at the equations

d{cy)dt = —n ey, »=_2%,/nlt (3.12)

Changing over in (3.11) to an asymptotic expression for the flow of the substance is valid for times on the order
of Ty, for which Eq. (3.12) applicable. Here, » can be regarded as the coefficient of exchange between the main
flow and the stagnant channel.

Wwith the initial condition (c)] r=0 =1, Eq. (3.12) is easily integrated: (c) = exp(—n 7). We also write the
expression for ¢

ey = ey e, (3.13)

which is valid throughout the range of times. Here, c is determined by Eq. (3.7). At 7 > Ty, Eq. (3.13) takes
the simple form

= (2/m) exp (— uv) arctg (z,0/1, V'6n). ' (3.14)

4. Some Additional Remarks and Generalizations. Since Pe =vi;/D > 1 for sufficiently high velocities
of the external flow, then, because ¥ ~ pl,, Dy ~ v*li/D > D or n < 1. Thus, Eq. (3.3) is typical for a channel
of general form near the region of union of the vortex and potential flows. Then it makes sense to determine
the coefficient k = DJ(0)/2, as was shown in Sec.3 for the general cagse as well. The sequence of calculation
is as follows: we expand the function ¢, (x,) in (2.8) into a Fourier series; then we arrive at the variable x, in
Eq. (1.11) for D,; using the Parseval equality, we obtain an expression for Dy(x,) in the form of a series; dif-
ferentiating this expression twice and substituting x; = 0, we find a sum which, by expanding Green's function
for the given problem, can be reduced to the form

D \ . x
0 L (w20, @) = g0, ) . (@.1)

=
I
y
1
Q
HE—— R

We will mention one other useful formula for k. Since x; =0, ¢ =0, and vy = 0 on the junction line, then
we find from (1.1) that $ ~ —Hiv,|x—0Z:1- Inserting this relation into the formula for D,(x,), we find the sought
formula
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1
k= | BH . oo dz, = m (0) 03 bey=o- (4.2)

0
We note that to find the parameters of the problem in the limiting case, it is sufficient to know the distribution
of v, and w, along the interface x; =0 rather than over the entire flow region. This is a significant simplifica-
tion. If we substitute the velocity of the externalflowv intoEq. (4.2) and put w =const in (4.1), then after we
equate these formulas we obtain (Cartesian coordinates x;, x,) the relation v ~ 0.41w, linking v and w, which is
sufficiently close to (2.11).

Boundary conditions of the first, second, or third type can be assigned on the boundary x =0 for the fun-
damental equation (3.3} in the junction region. An effective method of solving the problems created here, be-
sides the Laplace transform, is the use of a special integral transform containing the function Gj (x, r) (3.8).
Using the method in [16], after certain transformations we obtain

o0

_ rth(ary®{r, z)dr K .
(o) = 2§ e T (r)}j;f(ﬁ)@(r, B, .3

the sought integral transform, where h = 0 is a constant parameter in the third-order boundary condition
8®/9x|y-g =he,

I ‘9 i :
2 [7(" - %ﬂr (% +"2‘) . O, 2) = B(r)Gy(z, 1) + hG, (=, 7).
I (T+}21)

It is easily shown that B(r) and, thus, &, are real on the integration line. In special cases, h — » and 0, which
corresponds to a transition from a third-order boundary condition to first- and second-order conditions; (4.3)
becomes the well-known [17] expansions

B()=

o =2 @ nar (@GR =12

It should be noted that the scale of the stream function ¥, which has been frequently used here [such as in
(3.12)] can be expressed through other parameters from dimensional relations for k {(4.1) or (4.2)].

In examining the example in Sec. 3, for simplicity we used a flow scheme in which w is constant over the
entire slit. In experiments, some zones with a different (constant) vorticity are seen (see [5], which presented
a photograph of a flow with two zones and noted that vorticity is equal magnitude in the zones but opposite in
sign).

The formulas used in Sec. 2 for the stream function to calculate the effective diffusion coefficient D con-
tain an arbitrary vorticity distribution in the slit. In particular, the distribution is piecewise-constant. This
consideration can easily be taken into account in calculations if the boundaries of the zones and the vorticities
in them are known. Since the local solution in the region where the vortex and potential flows join together is
of decisive importance in the above-examined flow parameters, the foregoing consideration is unimportant for
obtaining the fundamental boundary-layer equation in this region (3.3) and analyzing its solution. However, in
the transition to large values of time (see Sec. 3) when several vortex zones are present, it is best to replace
Eq. (3.12) by a system of N (according to the number of zones) equations. These equations are derived on the
basis of the same considerations as (3.12) and appear as follows:

d{c, dr = —uo{eyy + #a( {ea) — {er),
dleiMdr = %j_1({cjiory — () + %i({ejer) — &), =2,3, .. ., N — 1, 4.4)
ey dr = wpy{{eyg-1) — {ex))s »
where we assume that the impurity concentration in the main flow is zero, and we ignore the possible exchange

of the substance between the bottom of the channel and the last N-thzone. Averaging of ¢; is done similarly to
{3.11) over the entire j-th zone. System (4.4) is augmented by the natural initial conditions

(i lemo=105 j=1,2,.., N (4.5)
and is easily solved by standard methods. The physical interpretation of problem (4.4}, (4.5) is as follows. The

assigned distribution of the impurity concentration over the channel first is quickly equalized (in the corre-
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sponding scale, see Sec. 3) within the circulation zones due to effective diffusion. This leads to conditions (4.5)
as well. The subsequent evolution of the system is determined by the relatively slight transport of the sub-
stance over the boundaries of the zones, since the effective diffusion coefficient decreases sharply here and
approaches the molecular diffusion coefficient. This exchange of substance between zones is also described

by system (4.4).

10.
11.

12.
13.
14.

15.
16.

17.
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